
Abstract. The electric dipole moment and the static di-
pole polarizability of the hydrogen iodide molecule were
studied using sophisticated correlated and relativistic
methods. Both scalar and spin–orbit relativistic effects
were carefully accounted for. We conclude that the large
differences between the theoretical and experimental
dipole moment, the dipole moment derivative and the
polarizability cannot be reconciled by improved account
of electron correlation and relativistic effects. The most
striking difference between theory and experiment is
observed for the polarizability anisotropy. We believe
that experimental data, namely the experimental dipole
moment (the most recent value is 0.176 au as compared
to our best theoretical estimate, 0:154� 0:003 au), the
parallel polarizability (44.4 and 38:47� 0:05 au) and the
anisotropy (11.4 and 2:33� 0:05 au) must be inaccurate.
Experimental and theoretical perpendicular polariza-
bility components (33.0 and 36:14� 0:05 au,) and the
mean polarizability (36.8 and 36:92� 0:05 au) agree
better. Our vibrationally corrected relativistic CCSD(T)
results represent the most sophisticated predictions of
electric properties of HI obtained so far.

Keywords: Hydrogen iodide – Dipole moment – Dipole
polarizability – Scalar relativistic effects – Spin-orbit
relativistic effects

1 Introduction

The aim of this paper is to calculate electric properties of
the hydrogen iodide molecule (X 1Rþ), namely the dipole
moment, both perpendicular and parallel components of
the static dipole polarizability, and to analyze discrep-
ancies between theoretical and experimental data. For
this purpose, electron correlation effects as well as scalar
and spin–orbit (SO) relativistic effects were thoroughly
reexamined.

The first dielectric measurement of the dipole moment
of HI was reported in 1924 by Zahn [1]. Experimental
observations based on the Stark effect [2, 3] appeared in
the second half of the twentieth century. Sophisticated
theoretical calculations including electron correlation ef-
fects have been published in the last decade [4, 5, 6, 7].
More recent papers also treated relativistic effects that are
expected to be important in compounds containing a
relatively heavy atom [6, 8, 9, 10, 11, 12, 13].

Experimental values of the electric polarizability as
published in standard reference books [14] result from
the old work of Denbigh [15]. Theoretical results are
presented in papers by Kellö and Sadlej [4, 5], and in the
recent studies by Maroulis [7] and Norman et al. [13].

The current study was motivated by discrepancies
between calculated and experimental values of the dipole
moment and polarizabilities of the HI molecule. This is
the heaviest diatomic hydrogen-halide compound for
which these electric properties are experimentally
known. A detailed discussion of this discrepancy was
presented by Maroulis [7]. He suggested a more rigorous
treatment of both scalar and SO relativistic effects
combined with a highly sophisticated consideration of
electron correlation. A few years ago, some of these
properties, like the dipole moment [4, 5], were only
considered using less sophisticated relativistic methods,
like the mass–velocity–Darwin treatment. When this
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work was almost completed a very recent paper by
Norman et al. [13] appeared. Relativistic effects are
treated in this paper in great detail at the Hartree–Fock
or the Dirac–Hartree–Fock level neglecting electron
correlation. These results were helpful for our analysis.
To reach accurate values one needs, however, to also
consider basis set and electron correlation issues on the
same footing along with scalar and SO relativistic effects.
Thus, we hoped that our one- and two-component
Douglas–Kroll–Hess [16, 17, 18] and more demanding
four-spinor [19] investigation of relativistic effects com-
bined with the coupled–cluster (CC) [20, 21, 22] and
variational configuration interaction (CI) [23] treatment
of the electron correlation should be capable of sheding
light on the previously mentioned discrepancies. Of
course, we will pay sufficient attention to the basis set
effect issue, even if this point was analyzed carefully
enough by Maroulis [7]. Finally, we compare our results
with other reliable theoretical data.

2 Methods and computational details

The starting point in our calculations is a single-determinant
Hartree–Fock self-consistent-field (SCF) wave function. Electron
correlation is treated by second-order Møller–Plesset perturbation
theory (MP2) and also by the CC method with iterative single and
double excitations (CCSD) combined with the noniterative estimate
of triple excitations using the converged single and double excita-
tion amplitudes from CCSD, the CCSD(T) method [21].

Considering the relatively large nuclear charge of the iodine atom
(Z ¼ 53), the treatment of relativistic effects is necessary. Use of the
Dirac–Coulomb–Breit Hamiltonian comprises the most rigorous
treatment of relativity. However, four-component ab initio methods
are computationally very demanding and thus we are restricted to
relatively small basis sets and/or to a limited number of correlated
electrons. Approximate one- or two-component methods are pre-
ferred instead, which are also known to describe valence properties
with reasonable precision [24]. The Douglas–Kroll–Hess transfor-
mation of the Dirac–Coulomb–Breit Hamiltonian [16] is widely
employed. It eliminates the positronic levels and leads to varia-
tionally stable scalar and spin–orbit terms. When including scalar
relativistic effects, only modified one-electron atomic integrals are
required. The corresponding two-electron corrections [17] do not
contribute significantly here. Standard nonrelativistic quantum
chemical codes are employed in that case. Relaxed scalar one-com-
ponent molecular orbitals serve as a basis for subsequent correlated
calculations. The estimation of the size of SO relativistic effects on

the electric properties studied was one of our goals. This was
achieved by four-component Dirac–Coulomb based methods, and
by the so-called Douglas–Kroll–Hess mean-field SO approach [18].

All the basis sets utilized are summarized in Table 1 and are
available upon request from the authors. In the present work we
used five different basis sets:

1. Nonrelativistic contractions of Sadlej’s polarized basis set [6.4/
3.2] for hydrogen [25] and [19.15.12/11.9.6] for iodine [5] were
used in the nonrelativistic calculations, while in Douglas–Kroll
(DK) calculations we used the so-called no-pair contractions of
these basis sets [27]. The acronym Pol is used here for both the
nonrelativistic and DK contraction of these basis sets.

2. The acronym ExtPol was used for the basis set [8.4.1/5.2.1] for
hydrogen and the [22.18.14.3/14.12.9.3] set for iodine. These sets
are extensions of the Pol sets. In the hydrogen basis we added
2s1d functions with small exponents to the Pol set and similarly
for iodine 3s3p2d1f functions to the HyPol set [26]. These
additional diffuse functions were taken from Maroulis’ basis sets
[7]. The HyPol set was developed for calculations of hyperpo-
larizabilities and actually it is the Pol set extended by two f
exponents while the two most diffuse d exponents are left
uncontracted. As in item 1 the ExtPol sets were also used in the
nonrelativistic or DK contractions depending on the type of
calculations. The ExtPol basis sets were generated in order to
mimic the previously used Maroulis basis sets [7].

3. The term unExtPol represents completely uncontracted ExtPol
sets, (8.4.1) for hydrogen and (22.18.14.3) for iodine, respec-
tively.

4. The term unPol222 represents the completely uncontracted Pol
sets extended by 2d2f2g and 2f2g2h functions, resulting in the
final (6.4.2.2.2) and (19.15.12.2.2.2) set for hydrogen and iodine,
respectively. These were obtained by repeating the use of the two
most diffuse p and d exponents of the hydrogen and iodine Pol
basis set, respectively.

5. Contracted relativistic basis sets sp-apvtz for I (L:[22.18.13.2/
8.9.5.2] S:[18.35.20.13.2/7.13.12.6.2]) and accpvtz for H
(L:[6.3.2/4.3.2] S:[3.8.3.4/3.6.3.2] of Visscher et al. [28] were
utilized in the correlated Dirac–Coulomb calculations. For these
basis sets we use the acronym r-pvtz

The MOLCAS [29] program package was employed for the one-
component CC calculations. The CI calculations were carried out
with transformed molecular integrals and the corresponding SCF
Molecular orbital vectors from the MOLCAS [29] package. The CI
program LUCITA [30] was used for the spin-free scalar relativistic
calculations, where nonrelativistic point group symmetry is con-
served. The code employs the generalized active space concept [23],
where the orbital space is subdivided into an arbitrary number of
active spaces with predefined occupation constraints. In the present
case, the atomic 4d shell of iodine forms the first space, and is either
kept fully occupied (corresponding to CI with eight active elec-

Table 1. The used basis sets.
For explanation see the text Symbol Atom Primitives Contraction Type

Pol H (6s4p) [3s2p] Nonrelativisitic;
DK

I (19s15p12d) [11s9p6d] Nonrelativisitic;
DK

ExtPol H (8s4p1d) [5s2p1d] Nonrelativisitic;
DK

I (22s18p14d3f) [14s12p9d3f] Nonrelativisitic;
DK

unExtPol H (8s4p1d) None
I (22s18p14d3f) None

unPol222 H (6s4p2d2f2g) None
I (19s15p12d2f2g2h) None

r-pvtz H L:(6.3.2) S:(3.8.3.4) L:[4.3.2] S:[3.6.3.2] Relativistic
I L:(22.18.13.2)

S:(18.35.20.13.2)
L:[8.9.5.2] S:[7.13.12.6.2] Relativistic
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trons) or is opened for single and double excitations (18-electron
CI). The second space, which contains the valence s and p func-
tions, is opened for single and double excitations in all cases. Two
further spaces comprise the virtual orbitals, split up for technical
reasons.

The wave function is represented by a complete expansion
within the given constraints, so no selection of determinants is
carried out. It is justified to investigate the contribution of the SO
coupling to the electric properties of the ground state in this
approximation as this system is predominantly a closed-shell single-
reference case. Thus, from a theoretical point of view, the inter-
action of excited triplet states with the singlet ground state can be
best modeled by coupling single excitations with the double exci-
tations in CISD required for the (leading) correlation contribu-
tions. It is clear that the inclusion of triple excitations from the
valence shell leads to a strong increase of the computational de-
mands, rendering an investigation including correlation of d elec-
trons impossible with the current implementation. In the present
study we determine the SO contribution with the extensive basis set
ExtPol and correlating 18 electrons in the SO-CISD approximation
as the highest-level approach.

For this, SO mean-field integrals were computed in the atomic
approximation with the AMFI code of Schimmelpfennig [31].
These were used in the two-component CI program LUCIAREL
[23], where identical active spaces with respect to LUCITA are
constructed. Now, in contrast to the spin-free approach, all deter-
minants with Kramers (time-reversal) spin projections differing
from the reference state by two units (triplet configurations) were
included in the trial wave function. This leads to larger expansion
spaces compared to the spin-free case. The optimization was carried
out fully variationally in configuration space in the totally sym-
metric boson irrep of the double group C�2 .

The Dirac–Coulomb calculations were performed with the
MOLFDIR [19] program suite, and the CC calculations in a

four-spinor basis were carried out with the Kramers unrestricted
code of Visscher et al. [22] connected to this package.

The electric properties were obtained using the finite-field
method, applying weak homogeneous static electric fields of
strengths of 0.0005 and 0.001 au (and 0.002 au in the SO-CI
calculations) in one- and two-component calculations and ori-
enting the molecule in the z direction. Possible inaccuracies in
relativistic effects due to the change of the relativistic picture [32]
are expected to be small for valence properties of HI [24]. In the
four-component Dirac–Coulomb computations electric fields of
strengths 0.0012 and 0.0006 were generated by four remote point
charges [33] placed in z and x directions, respectively. A poly-
nomial fit of the perturbed energies was used in the calculations
of the dipole moments and polarizabilities.

Most calculations were performed at the experimental bond
length, Re ¼ 3:0409 au [34]. Estimates of vibrational corrections to
electric properties were based on a series of additional calculations
for bond lengths in the interval of �0:8 au around the equilibrium
distance. T1 and T2 amplitudes were not larger than 0.013 and
0.086, respectively.

The atomic units used throughout the paper have conversion
factors 1 au = 2.5418 D for the dipole moment and 1 au = 1.4818
� 10�25 cm3 for the polarizability.

3 Results and discussion

One-component results for the dipole moment and the
dipole polarizabilities using various basis sets are pre-
sented in Table 2. Additional results aimed at the analysis
of the electron correlation effect dependence on the
number of correlated electrons, i.e., effects of the

Table 2. Basis set effects on electric properties of HI. Nonrelativistic (NR), one component scalar-relativistic (SC) calculations with 18
correlated electrons. All calculations at the experimental HI bond length Re ¼ 3:0409 au. [34]. All values in atomic units

Method Basis l azz axx �aa Da

NR SC NR SC NR SC SC SC

SCF Pol 0.263 0.218 37.00 36.72 34.52 34.22 35.05 2.50
SCF ExtPol 0.263 0.218 37.12 36.84 34.51 34.21 35.09 2.63
SCF unPol222 0.217 36.87 34.21 35.10 2.66
MP2 Pol 0.231 0.189 37.38 37.09 34.95 34.81 35.57 2.28
MP2 ExtPol 0.226 0.185 37.92 37.62 35.64 35.48 36.19 2.14
MP2 unPol222 0.175 37.70 35.66 36.34 2.04
CCSD Pol 0.218 0.175 37.29 36.97 35.05 34.88 35.58 2.09
CCSD ExtPol 0.214 0.171 37.79 37.45 35.63 35.45 36.12 2.00
CCSD(T) Pol 0.212 0.169 37.49 37.15 35.29 35.13 35.80 2.02
CCSD(T) ExtPol 0.208 0.166 38.04 37.69 35.97 35.80 36.43 1.89
Other theoretical results
SCFa [11.10.10/7.5.1] 0.263 37.12 34.44
SCFa [11.10.10.3/7.5.1] 0.263 37.09 34.46
SCFa [21.16.15.7/11.9.7.3] 0.256 37.12 34.50
MP2a [11.10.10/7.5.1] 0.216 37.86 35.13
MP2a [11.10.10.3/7.5.1] 0.217 37.91 35.60
MP4a [11.10.10/7.5.1] 0.196 38.00 35.38
CCSD(T)a [11.10.10/7.5.1] 0.197 37.98 35.41
SCFb [11.9.6/3.2] 0.263 0.223 37.03 36.69 34.48 34.09 34.96 2.60
SCFb [11.9.6.2/3.2] 0.257 0.218 36.99 36.65 34.50 34.11 34.96 2.54
MP2b [11.9.6.2/3.2] 0.219 37.18 34.68
MP4b [11.9.6.2/3.2] 0.199 37.34 35.02
SCFc [23.18.9.2/7.4.2] 0.260 0.221 37.13 36.82
MP4c [23.18.9.2/7.4.2] 0.192 0.152 38.15 37.84

a Maroulis [7]
b First-order relativistic correction, Sadlej [5]
c First-order relativistic correction, valence correlation, Kellö and Sadlej [4]
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core–valence correlation are presented inTable 3.Finally,
the importance of SO effects is analyzed in Table 4.

3.1. Dipole moment

The first point to be discussed is the basis set effect. When
we increase the basis set by adding diffuse functions and
functions with higher angular momenta, a slight decrease
of the dipole moment is observed (Tables 2, 4). This is

especially significant at the correlated levels MP2, CCSD,
CCSD(T), and (SO)CISD. Decontraction of the basis set
leads to further lowering of l (Table 3). We are unable to
extrapolate our results to the basis set limit [36] with the
basis sets used in this work, yet, the results are sufficiently
transparent to demonstrate that the basis set issue at the
scalar relativistic level is not the reason for the discrepancy
between theoretical and experimental dipole moments
from the Stark effect measurements [2]. This agrees with
Maroulis’ conclusions [7].

Table 3. Electric properties of HI: one component scalar-relativistic calculations. Effect of core–valence correlation. ExtPol basis sets, in
parentheses results in unExtPol sets. All calculations at the experimental HI bond length Re ¼ 3:0409 au. [34]. All values in atomic units

Method l azz axx �aa Da

SCF 0.218 (0.217) 36.84 (36.86) 34.21 (34.23) 35.09 (35.11) 2.63 (2.63)
MP2-8 0.174 (0.167) 37.81 (37.80) 35.76 (35.74) 36.44 (36.43) 2.05 (2.06)
MP2-18 0.185 (0.178) 37.62 (37.60) 35.48 (35.46) 36.19 (36.17) 2.14 (2.14)
MP2-26 0.180 (0.173) 37.72 (37.70) 35.63 (35.61) 36.33 (36.31) 2.09 (2.09)
MP2-all (0.174) (37.70) (35.59) (36.29) (2.11)
CCSD-8 0.166 (0.159) 37.59 (37.58) 35.71 (35.68) 36.34 (36.31) 1.88 (1.90)
CCSD-18 0.171 (0.165) 37.45 (37.44) 35.45 (35.42) 36.12 (36.09) 2.00 (2.02)
CCSD-26 0.168 (0.161) 37.55 (37.54) 35.59 (35.56) 36.24 (36.22) 1.96 (1.98)
CCSD(T)-8 0.160 (0.154) 37.83 (37.82) 36.04 (36.02) 36.64 (36.62) 1.79 (1.80)
CCSD(T)-18 0.166 (0.159) 37.69 (37.68) 35.80 (35.77) 36.43 (36.41) 1.89 (1.91)
CCSD(T)-26 0.162 (0.155) 37.79 (37.78) 35.95 (35.91) 36.56 (36.53) 1.84 (1.87)
Other theoretical results
MP4a 0.157 37.34
Our best theoretical values (vibrationally corrected values in parentheses)

0.153 (0.154) 37.82 (38.47) 35.89 (36.14) 36.53 (36.92) 1.93 (2.33)
Experiment 0.176b 44.4c 33.0c 36.8c, 36.71d 11.4c

(0.15e) 34.25-35.30f

a Kellö and Sadlej [4] plus estimated core correlation contribution
b Stark effect measurement by Van Dijk and Dymanus [2]
c Denbigh [15]

d Dynamic value referenced by Hirschfelder et al. [35]
e Dielectric measurements by Zahn [1]
f Static value cited by Maroulis [7]

Table 4. Electric properties of HI. Comparison of scalar relativistic (SC) and spin-orbit (SO) values. All values in atomic units

Method Basis l azz axx

SC SO SC SO SC SO

SCFa unExtPol 0.217 0.205 36.86 37.09 34.23 34.35
SCFb r-pvtz 0.202 36.51 33.64
MP2b r-pvtz 0.161 37.08 34.60
CCSDb r-pvtz 0.154 36.79
CCSD(T)b r-pvtz 0.151 36.96
(SO)CISD-8c Pol 0.173 0.170 37.00 37.02
(SO)CISD-18c Pol 0.181 0.180 36.77 36.78
(SO)CISD-8c ExtPol 0.170 0.167 37.44 37.48
(SO)CISD-18c ExtPol 0.178 0.177 37.18 37.19
Other theoretical results
SCFd 0.210 0.197 37.45 37.69 34.31 34.43
RCIe 0.163
(SO)CIf 0.189 0.181
(SO)CIg 0.185 0.176
ZORAh 0.17 0.16
ACPFi 0.172 0.162
CCSD(T)i 0.170 0.161

a One-component scalar and four-component Dirac–Coulomb
calculations
b Dirac–Coulomb calculations, eight correlated electrons
c One- and two-component configuration interaction calculations,
8 and 18 correlated electrons, respectively.
d Norman et al. [13]

e Chapman et al. [10]
f Chapman et al. [9, 10]
g Alekseyev et al. [12]
h Van Lenthe et al. [11]
i Dolg [6]
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In general, electron correlation leads to a significant
decrease of the dipole moment at both nonrelativistic and
scalar relativistic levels (Table 2). Deeper analysis (Ta-
ble 3) shows that the dipole moments oscillate slightly
when one proceeds stepwise from correlating just eight
valence electrons, adding 4d iodine electrons (a slight in-
crease) and, continuing further, by taking deeper 4s and4p
shells into account (which leads back to a slight decrease).
Comparing results with 26 and all electrons correlated at
the MP2 level (Table 3) allows one to conclude that 26
correlated electrons is close to saturation. Thus, the
number of correlated electrons does not affect the results
significantly. The pattern is the same at MP2, CCSD, and
CCSD(T) levels, however, the difference between MP2
and CCSD(T) dipole moments is typically about 0.018 au
and is thus critical if accurate results have to be obtained.
Triples contribute by about 0.005 au.

Scalar relativistic effects are important in HI. The
reduction of the dipole moment (Table 2) is less than
that due to electron correlation by about 0.04 au (26%
of the final dipole moment), but is very important when
theoretical and experimental values are compared. This
was also found by Kellö and Sadlej [4] who calculated
the relativistic correction perturbatively using mass–
velocity and Darwin terms. The same ensues from the
SCF results of Norman et al. [13].

SO relativistic effects, on the other hand, affect
the dipole moment only slightly. Sophisticated SO-CI
calculations give a negative contribution, �0:001 au or
�0:003 au, depending on the number of correlated
electrons (Table 4). We prefer data with eight correlated
electrons over those with 18 electrons in our final esti-
mates. The reason is the oscillatory character of the
correlation contribution to the dipole moment (and in
fact also to polarizabilities) when we increase the num-
ber of correlated electrons. Other calculations on the
dipole moment of HI [6, 9, 10, 11, 12, 13] (Table 4) show
a slightly larger SO contribution (up to �0:01 au). We

note that the largest contribution is observed in the
Dirac–Hartree–Fock calculations by Norman et al. [13].
We conclude that our SO-CI results are most appro-
priate for our purposes owing to the compatibility of the
DK Hamiltonian and of the basis sets used in scalar
relativistic calculations and also for considering electron
correlation effects.

The bond-length dependence for the scalar relativistic
CCSD(T) dipole moment calculated in ExtPol basis sets
with 26 correlated electrons (in atomic units) is expressed
as follows:

lðRÞ ¼ 0:1620� 0:0231ðR� ReÞ þ 0:0339ðR� ReÞ2

� 0:0201ðR� ReÞ3 � 0:0006ðR� ReÞ4 : ð1Þ
The dipole moment curves from scalar relativistic

calculations are visualized in Fig. 1. The general shape is
similar for SCF and CC calculations, whereas the MP2
curve differs significantly. Triples affect the shape of the
dipole moment curve only slightly. Riris et al. [3] have
experimentally measured the bond-length dependence of
the dipole moment and obtained the first derivative
ðdl=dRÞe ¼ �0:0103. From our dipole moment curves
two dipole moment derivatives result, namely �0:0231
and �0:0218 for experimental and calculated values of
Re �3:0409 and 3.06 au, respectively. Clearly, this is in
significant disagreement with the experimental value.
Maroulis [7] obtained a similar theoretical value,
ðdl=dRÞe ¼ �0:0171 from nonrelativistic calculations.
We also fitted the fourth-order polynomials over other
calculated dipole moment curves using the experimental
Re. The results of Chapman et al. [9] lead to the value of
�0:0414 and �0:0518 from scalar and SO-CI calcula-
tions, respectively. On the other hand, Alekseyev et al.
[12] presented ðdl=dRÞe ¼ �0:0116 and �0:0297 for
spin-free and SO-corrected CI, respectively.

The zero-point vibrational (ZPV) correction obtained
from the dipole moment curve given above is about

Fig. 1. Bond-length dependence of the
dipole moment of the HI molecule.
Scalar relativistic self-consistent-field (SCF ),
Second-order Møller–Plesset (MP2), Cou-
pled cluster with iterative single and double
excitations (CCSD) and CCSD combined
with the noniterative estimate of triple
excitations [CCSDðT Þ] calculations with 26
electrons correlated
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þ0:0007 au This is a negligible correction and was also
found by Maroulis [7], who estimated it from the non-
relativistic CCSD(T) curve.

Using the calculated CCSD(T) dipole moment with
the unExtPol basis set, 0:155 au, and correcting this
value by core–valence correlation effects, ZPV, and the
SO effect (0.001, 0.001, and )0.003, respectively, Tables
3, 4), we predict our best theoretical value for the dipole
moment as 0:154� 0:003 au Alternatively, one could use
the scalar CISD-8 value with the ExtPol basis set from
Table 4, 0:167 au, as a basis for the final estimate. Its
scalar counterpart (0:170 au) agrees to within 0:004 au
with the scalar relativistic CCSD-8 value (0:166 au).
Considering that the two methods in which triples are
missing are conceptually different, this gives further
confidence in our final estimate.

It remains unclear why our final estimate agrees rea-
sonably with the old nonspectroscopic experiment of
Zahn [1] and differs from the Stark effect measurements
[2]. Our best theoretical estimate can also be supported
by adding the SO contribution of �0:003 au to the best
result of Kellö and Sadlej [4] (Table 3), which gives,
again, a value of 0:154 au Also, when we add scalar and
SO relativistic contributions of approximately �0:04 au
to the best nonrelativistic result of Maroulis [7], 0.192 au,
we again land near Zahn’s experiment. And finally, the
Dirac–Coulomb CCSD(T) value of 0.151 au with the
relativistic r-pvtz basis set and eight electrons correlated
gives us further confidence in our final prediction. A
correction of this value by effects due to core-valence
correlation would result in an increase by 0.001–
0.002 au, again nearly resembling our best estimate.

3.2 Static dipole polarizabilities

The pattern of basis set effects within our rather limited
selection of sets can be seen from the data in Table 2.
Basis set enlargement from the Pol to the ExtPol basis
leads to a slight and quite similar increase of both
components of the polarizability and amounts to 0.54
and 0.67 au for the parallel and perpendicular polariz-
ability, respectively, at the scalar CCSD(T) level. Thus,
the anisotropy is rather insensitive to such a change of
the basis as well. Decontraction of the ExtPol basis set
affects the scalar relativistic CCSD(T) polarizabilities
almost negligibly (Table 3). Combining our results with
those presented by Maroulis [7] we conclude that the
basis set issue is not a key problem in the accurate
calculation of both components of the polarizabilities.
This does not mean that there is no space for further
improvement by expanding the basis set in a more
systematic way that would allow extrapolation methods
to polarizabilities [36].

Electron correlation increases both components of
the polarizability by about 0.85 au (parallel component)
and by 1.59 au (perpendicular component) using the
scalar relativistic CCSD(T) values with the ExtPol basis
set. The number of correlated electrons does not change
the overall picture of the electron correlation in both
components of the polarizability. Like with the dipole

moment, correlating 8, 18, or 26 electrons is a bit
oscillatory. Including the iodine 4d electrons in
CCSD(T) lowers both polarizability components by less
than 0.2 au, while considering also 4s and 4p electrons
brings both components back by some 0.1–0.05 au In
fact, the number of correlated electrons is by no means
critical in an accurate calculation of the HI polarizabil-
ity. Actually, correlating only eight valence electrons
leads to results very close to those obtained from cor-
relating 26 electrons. Since correlating all electrons, as
demonstrated by an MP2 calculation, agrees perfectly
with results from correlating 26 electrons and since the
overall picture of electron correlation at the MP2 level is
similar to that at the highly correlated CC level, the
effect arising from the number of correlated electrons
seems to be reliable enough. The slight difference
between the final CCSD(T) and MP2 values with the
unExtPol basis sets, 0:08 au (azz) and 0:32 au, (axx),
respectively (Table 3), is unimportant, even if not com-
pletely negligible. What is important is that changes of
this size cannot reconcile theory and experiment for
example, Da.

The R- dependencies for the scalar relativistic
CCSD(T) electric properties with the same basis sets and
the same number of correlated electrons as for the dipole
moment curves are

azzðRÞ ¼ 37:79þ 12:32ðR� ReÞ þ 3:36ðR� ReÞ2

� 0:97ðR� ReÞ3 � 0:75ðR� ReÞ4 ; ð2Þ

axxðRÞ ¼ 35:95þ 1:80ðR� ReÞ þ 0:13ðR� ReÞ2

� 0:04ðR� ReÞ3 � 0:11ðR� ReÞ4 ; ð3Þ

�aaðRÞ ¼ 36:56þ 5:30ðR� ReÞ þ 1:21ðR� ReÞ2

� 0:35ðR� ReÞ3 � 0:33ðR� ReÞ4 ; ð4Þ

DaðRÞ ¼ 1:84þ 10:52ðR� ReÞ þ 3:23ðR� ReÞ2

� 0:92ðR� ReÞ3 � 0:63ðR� ReÞ4 : ð5Þ
The polarizability curves from DK SCF and

CCSD(T) calculations are displayed in Figs. 2 and 3.
The shape of the SCF and CC curves is quite similar for
both polarizability components as well as for the mean
polarizability and anisotropy. Vibrational corrections
are 0:65� 0:05 and 0:25� 0:05 for the azz and axx com-
ponents, respectively. We note that the pure vibrational
contribution is included in the parallel component to-
gether with the ZPV contribution.

Table 3 shows a significant discrepancy between the
experimental and all theoretical values of the parallel
polarizability. Consequently, the anisotropy is much
smaller than in experiment. Our original expectation,
prompted to us by Maroulis [7], was that better treat-
ment of relativistic effects and especially incorporating
SO effects could eventually reconcile theoretical and
experimental results. This turns out not to be true. The
CISD and SO-CISD results in Table 4 clearly show that
SO effects are small and can by no means increase the
parallel polarizability to the extent which would lead to
better agreement of the anisotropy with experiment. The
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SO contribution arising from the Dirac–Hartree–Fock
calculation is larger than our (SO)CISD-18 value. Even
if the SO effect from the Dirac–Hartree–Fock calcula-
tions is larger for the azz than for the axx component, the
effect is too small to alleviate the disagreement between
the theoretical and experimental anisotropy. Since one
can hardly expect any reasonable change arising from
further improvement of the basis sets and the treatment
of electron correlation, we conclude that we see no way
of bringing the theoretical parallel polarizability and
the polarizability anisotropy into better agreement with
experiment.

To estimate the best theoretical values for the
parallel polarizability we proceed similarly as with the
dipole moment. Using the CCSD(T) polarizability ob-
tained with the unExtPol basis set (Table 3), azz =
37.78 au, and correcting this value by core–valence
correlation effects, the vibrational correction, and the
SO effect (0.00, +0.65, and +0.04, respectively, Tables
3, 4), we predict our best theoretical value for the
parallel polarizability as 38:47� 0:05 au

Estimating SO corrections to the scalar CCSD(T)
value for axx = 35:91 au is more complicated. Unfor-
tunately, we were unable to obtain a correlated SO value
for axx with the CC or SO-CISD method owing to

Fig. 2. Bond-length dependence of zz and xx
components of the polarizability of the HI
molecule. Scalar relativistic SCF and
CCSD(T) calculations with 26 electrons
correlated

Fig. 3. Bond-length dependence of the mean
polarizability and the polarizability anisot-
ropy of the HI molecule. Scalar relativistic
SCF and CCSD(T) calculations with
26 electrons correlated
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technical problems when the symmetry is reduced after
applying an external electric field. Core correlation
effects and the vibrational correction are estimated as
)0.02 and +0.25, respectively, (Table 3). SO effects are
precisely calculated at the SCF level. Our Dirac–Cou-
lomb SCF calculations and the results of Norman et al.
[13] lead to the same value, þ0:12 au. This is about half
of the SO contribution to azz at the same level. We
should realize that the SO contribution decreases sig-
nificantly when electron correlation is included in azz (see
SO-CISD data in Table 4). Our most sophisticated
correlated value including SO effects is calculated using
the MP2-8 Dirac–Coulomb method: axx = 34:60 au with
the relativistic r-pvtz basis set. This basis set, specifically
designed for correlated Dirac–Coulomb calculations,
underestimates the Dirac–Coulomb SCF axx value by
0.71 au in comparison with the unExtPol basis set. Even
if possibly not so suitable for Dirac–Coulomb calcula-
tions, this last basis is more suitable for calculations of
polarizabilities. For this reason we do not consider the
difference between the scalar MP2-8 value and the
CCSD(T)-26 for axx, which is available from Table 3.
Thus, we do not use this difference as a correction for
correlation (and basis set) effects to the MP2-8 Dirac–
Coulomb result. We rather suppose that the SO cor-
rection is small for axx as was the case for the dipole
moment and the parallel polarizability. Thus, starting
from our axx = 35.89 au value and considering the
vibrational correction, our best estimate is axx =
36:14� 0:05 au. Using these values we arrive at the
mean scalar polarizability and the anisotropy of
the polarizability, �aa = 36:53� 0:05 and Da =
1:93� 0:05 au The vibrationally corrected values are �aa
= 36:92� 0:05 and Da = 2:33� 0:05 au.

4 Conclusions

In the present study we have carefully explored basis set
effects by adding diffuse functions and by decontraction
of basis sets, correlation effects by using the MP2, CISD,
CCSD, and CCSD(T) sequence of methods and by also
taking deeper electrons into account, and scalar and SO
relativistic effects by using Douglas–Kroll–Hess and
Dirac–Coulomb Hamiltonians.

Disagreement between theory and experiment is fre-
quently caused by deficiencies in basis sets. One might
suspect that the original Maroulis basis sets lead to some
‘‘overpolarization’’ of the molecule owing to inconsis-
tency of the H and I basis sets. As a matter of fact, our
series of basis sets leads to results which are not too
different from previously published data. Thus, the
choice of basis set does not seem to be a reason for the
observed discrepancy between theory and experiment.
Of course, an improvement could be achieved by using
more systematically extended series that would allow an
extrapolation to the basis set limit.

Electron correlation effects from scalar relativistic
CCSD(T) calculations with the ExtPol basis set and 18
electrons correlated are approximately the same as at the
nonrelativistic level (values in parentheses): for the di-

pole moment, parallel, and perpendicular polarizability
they are )0.52 ()0.55), +0.85 (+0.92), and +1.59
(+1.46) au, respectively and are thus inevitable if
accurate properties shall be obtained. This means that
correlation and scalar relativistic effects are approxi-
mately additive. Scalar relativistic contributions to the
three properties from the ExtPol CCSD(T) calculations
are )0.042, )0.35 and 0.17 au, respectively. Even if much
smaller than electron correlation effects, one cannot
neglect scalar relativistic effects that are very important
in comparison of the theoretical dipole moment with its
experimental value. SO effects at the Dirac–Coulomb
SCF level for the dipole moment, parallel, and perpen-
dicular polarizabilities are -0.012, +0.23, and +0.12 au,
respectively. At the SO-CISD correlated level SO cor-
rections are negligible for the dipole moment and the
parallel polarizability. Correlated Dirac–Coulomb cal-
culations for the perpendicular polarizability could only
be obtained at the MP2 level. Even if there is space for
further improvement we doubt that any more precise
calculation of correlation and relativistic effects can
change the results significantly.

Our final theoretical values, including vibrational
corrections, are (in atomic units) dipole moment
l ¼ 0:154� 0:003 (experimental value is 0.176 from the
Stark spectra and 0.15 from dielectric measurements),
static dipole polarizabilities azz = 38:47� 0:05 (experi-
mental value is 44.4), axx = 36:14� 0:05 (experimental
value is 33.0), �aa = 36:92� 0:05 (experimental value is
36.8), and Da = 2:33� 0:05 (experimental value is 11.4).

In spite of the significant improvement of theoretical
treatments used in the present work, principal discrep-
ancies between theory and experiment, as stressed by
Maroulis [7], still persist. The dipole moment as pre-
dicted from scalar relativistic CCSD(T) calculations is
significantly lower than the experimental value from the
Stark spectra. Our study corroborates the suspicion that
the experimental values for azz and axx [15] are inaccu-
rate. In fact, the large difference between the experi-
mental azz and axx neither finds support through all
theoretical treatments mentioned here (including our
own) nor through physical reasoning. The polarizability
and its anisotropy are strongly sensitive to details in the
valence structure of the wave function. Intuitively, a
large anisotropy of HI is not expected on these grounds.
The expected anisotropy should instead be roughly
similar to that resulting from sophisticated correlated
relativistic calculations. A supporting argument for this
claim follows from analogous data for HCl. The static
anisotropy of the polarizability for this species, calcu-
lated with similar correlated methods as those used in
the present work [38], is small, 1.6 au, which agrees with
experiment fairly well. A common complicating factor
with accurate experimental data for polarizabilities and
comparisons with theoretical values is also the frequency
dependence of this property and extrapolation to static
limits.

We conclude that the main message of this paper is
not the disagreement between theory and experiment for
selected electric properties of HI. this was already known
from other papers. Our results rather represent the most
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sophisticated predictions of accurate data for this species
obtained so far.
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Note added in proof Meanwhile we performed the relativistic Dirac-

Coulomb CCSD(T) calculations in the unExPol basis set with eight

correlated electrons and 38% of the highest virtual space was deleted.

The obtained dipole moment value is 0.143 au, what is lower than the

corresponding one in the contracted r-pvtz basis, 0.151 au (Table 4). By

subtracting the scalar relativistic CCSD(T)-8 value of 0.154 au (Table 3)

from the new one we calculate larger SO contribution to the dipole

moment, which isi now �0:011 au. Employing the new data we land at

the value of 0:146� 0:011 au for the final prediction of the dipole

moment of the HI molecule.
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